Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicular networks in interphase Xenopus egg extracts
نویسندگان
چکیده
We discovered by using high resolution video microscopy, that membranes become attached selectively to the growing plus ends of microtubules by membrane/microtubule tip attachment complexes (TACs) in interphase-arrested, undiluted, Xenopus egg extracts. Persistent plus end growth of stationary microtubules pushed the membranes into thin tubules and dragged them through the cytoplasm at the approximately 20 microns/min velocity typical of free plus ends. Membrane tubules also remained attached to plus ends when they switched to the shortening phase of dynamic instability at velocities typical of free ends, 50-60 microns/min. Over time, the membrane tubules contacted and fused with one another along their lengths, forming a polygonal network much like the distribution of ER in cells. Several components of the membrane networks formed by TACs were identified as ER by immunofluorescent staining using antibodies to ER-resident proteins. TAC motility was not inhibited by known inhibitors of microtubule motor activity, including 5 mM AMP-PNP, 250 microM orthovanadate, and ATP depletion. These results show that membrane/microtubule TACs enable polymerizing ends to push and depolymerizing ends to pull membranes into thin tubular extensions and networks at fast velocities.
منابع مشابه
Multiple mechanisms determine ER network morphology during the cell cycle in Xenopus egg extracts
In metazoans the endoplasmic reticulum (ER) changes during the cell cycle, with the nuclear envelope (NE) disassembling and reassembling during mitosis and the peripheral ER undergoing extensive remodeling. Here we address how ER morphology is generated during the cell cycle using crude and fractionated Xenopus laevis egg extracts. We show that in interphase the ER is concentrated at the microt...
متن کاملMicrotubule-based endoplasmic reticulum motility in Xenopus laevis: activation of membrane-associated kinesin during development.
The endoplasmic reticulum (ER) in animal cells uses microtubule motor proteins to adopt and maintain its extended, reticular organization. Although the orientation of microtubules in many somatic cell types predicts that the ER should move toward microtubule plus ends, motor-dependent ER motility reconstituted in extracts of Xenopus laevis eggs is exclusively a minus end-directed, cytoplasmic d...
متن کاملCell cycle control of microtubule-based membrane transport and tubule formation in vitro
When higher eukaryotic cells enter mitosis, membrane organization changes dramatically and traffic between membrane compartments is inhibited. Since membrane transport along microtubules is involved in secretion, endocytosis, and the positioning of organelles during interphase, we have explored whether the mitotic reorganization of membrane could involve a change in microtubule-based membrane t...
متن کاملStepwise Reconstitution of Interphase Microtubule Dynamics in Permeabilized Cells and Comparison to Dynamic Mechanisms in Intact Cells
Microtubules in permeabilized cells are devoid of dynamic activity and are insensitive to depolymerizing drugs such as nocodazole. Using this model system we have established conditions for stepwise reconstitution of microtubule dynamics in permeabilized interphase cells when supplemented with various cell extracts. When permeabilized cells are supplemented with mammalian cell extracts in the p...
متن کاملEB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules.
EB1 targets to polymerizing microtubule ends, where it is favorably positioned to regulate microtubule polymerization and confer molecular recognition of the microtubule end. In this study, we focus on two aspects of the EB1-microtubule interaction: regulation of microtubule dynamics by EB1 and the mechanism of EB1 association with microtubules. Immunodepletion of EB1 from cytostatic factor-arr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 130 شماره
صفحات -
تاریخ انتشار 1995